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Abstract

An analytical and numerical analysis is made of an isotropic elastic medium containing a cylindrical borehole of
infinite length in which is located a tightly fitting rigid plug of finite length. Both the pulling of the plug and the oc-
currence of a radial misfit are considered. The boundary conditions are mixed, with zero radial and shear stresses at the
bore surface outside the plug region and displacements given across the plug surface. Using integral representations for
a Love auxiliary function, the crucial step is the analytical incorporation of the square root singularity at boundary
condition junctions. This is done by using Neumann Bessel function series representations of the integrand kernels of
boundary condition stresses such that discontinuous Weber—Schafheitlin integrals can be used to satisfy these condi-
tions exactly. Displacement conditions are solved in terms of integrals of products of Bessel functions. The solutions
provide expressions for the far field behaviour of a Kelvin point load solution for the plug pull case and a combined
centre of expansion plus double force for radial misfit. Numerical results show good convergence of the method and the
correct singular behaviours of borehole surface stresses.
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1. Introduction

Practical cases of isotropic media containing cylindrical boreholes, within which are rigid plugs either
being withdrawn by bore axial forces or causing radial pressures due to radial misfit, have been examined
by Rajapakse and Gross (1996). In both cases, idealised mathematical models to analyse the problem
assume the medium to be of infinite extent, axisymmetric in behaviour of displacements and stresses relative
to the bore axes, and boundary conditions on the borehole surface which are zero radial and shear stresses
outside the plug region and radial and axial displacements at the plug surface.

In these cases of mixed boundary conditions there is a square root singularity for stresses at the
boundary condition junctions. This degree of singularity may be proved by the analysis of Zak (1964),
justified by the work of Ting et al. (1985), who showed that the dominant behaviour corresponds to that at
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the corner of a two-dimensional wedge in plane strain of opening angle = (Williams, 1952). When exam-
ining the method of Rajapakse and Gross (1996), which is one of Fourier integral transforms and solution
of resulting multiple integral equations using Green’s functions and numerical quadrature, no use is made
of the knowledge of this singularity other than to confirm that numerical results suggest this type of be-
haviour. Here it will be shown that the singular behaviour can be incorporated into the solution process to
obtain series solutions in terms of integrals whose coefficients show good numerical convergence. The
crucial idea is in the implementation of discontinuous integrals of Weber—Schafheitlin type involving the
products of Bessel functions of the first kind. By representing the radial and shear stresses as Fourier cosine
and sine integrals and letting their corresponding inversions be represented by Bessel function Neumann
series these discontinuous integrals enable the stress conditions to be satisfied identically. The remaining
displacement conditions can then be solved readily in terms of Fourier cosine and sine integrals. The same
type of procedure has been applied to Laplacean equations in electrostatics by Verolino (1998) and in
hydrology by Robinson (2001). Although the work of Sneddon (1966) is extensive in its treatment of mixed
boundary value problems and integral equations, the method applied here is not mentioned.

In order to make numerical computations it is necessary to evaluate infinite integrals whose integrands
are products of two Bessel functions of the first kind of arbitrary integer orders and an ultimately
monotonic function of the integration variable. Because of the, sometimes, complicated oscillatory nature
of the integrand and the magnitude of large argument asymptotic behaviour which is algebraic, the ac-
celerated convergence procedures of Lucas (1995) are used.

The following sections define the problem for both plug pull and radial misfit, express axisymmetric
displacements and stresses in terms of Love’s auxiliary function, and analytically and numerically solve
both problems, showing that the remote behaviour for the former is that of the Kelvin solution for a
concentrated force and the latter that of a centre of dilatation combined with a double force.

2. Problem formulations

In Fig. 1 are shown local sections of an infinite isotropic elastic medium containing cylindrical boreholes
of radii @ in which are tightly fitting rigid plugs of lengths 2A. The axes are the natural ones of z along the
bore axes and r radial with origins at the centres of plugs.
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Fig. 1. Schematic for a borehole containing a tightly fitting, rigid plug. (a) Plug pull case, (b) radial misfit.
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Fig. 1a represents the plug pull problem with an bore axial force, P. Boundary conditions at » = a in this
case are
0,(a,2) =0, |z|>h
0-(a,z2) =0, |z >h
u(a,z) =0, l|z| <h
u(a,z) =9, |z <h

(1)

These axisymmetric conditions require that radial stress o,,.(r,z) and displacement u,(r,z) are antisymmet-
rical with respect to z, and shear stress o,.(r,z) and displacement u.(r,z) are symmetrical with respect to z.
A relationship connecting P and stress ¢,., and ultimately 6., is

P=2na /h 0..(a,z)dz (2)

h
The negative sign is introduced because 0,-(a,z) is negative along the contact surface.
The radial misfit problem is depicted in Fig. 1b with boundary conditions
o,(a,z) =0, |z| >h
0-(a,2) =0, |z| >h
u.(a,z) =9,, lz| <h
u(a,z) =0, l|z|<h

3)

Here radial stress ¢,.(r,z) and displacement u,(r,z) are symmetrical with respect to z, and shear stress
0,.(r,z) and displacement u.(r,z) are antisymmetrical with respect to z.
Average uniform radial pressure, Q, may be expressed as

1 h
0= T [h 0., (a,z)dz 4)
and is also ultimately proportional to J,.
3. Analytical solutions for plug pull

Axisymmetric displacements and stresses may be defined in terms of Love’s auxiliary function, ¢, in
cylindrical coordinates (Love, 1944; Mindlin, 1936; Timoshenko and Goodier, 1951), as

(5)
[, 10
“W‘&[N ‘;a]‘f’
0 , @
“ﬂ—a—z[@‘w ‘@]4’
d ,
“ﬂ—a[“‘w ‘@]‘ﬁ
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and uy = 0 = g,y = 0. Elastic constants are Poisson’s ratio v and shear modulus p = E/(1 + 2v) with E as
Young’s modulus. V? = 8?/0r> + (1/r)d/0r + 0*/0z* and ¢ satisfies the biharmonic equation

Vi =0 (6)
For the Fourier sine transform pair involving the antisymmetrical o,.(a,z), define
2 [ , 2 [ ,
Gp)=- 6, (a,z)sin fzdz = = 0,-(a,z)sin fzdz
i i (7)

G(a,z) = /0 " G(p) sin p-dp

Similarly for the symmetrical o,.(a,z), define the Fourier cosine transform pair

2 [ 2 [t
H(ﬁ):E/O Grz(a,z)cosﬁzdz:E/o 0,.(a,z)cos fzdz

% (8)
o.(a,z) = /o H(f)cos fzdp

An auxiliary function ¢ which is symmetrical in z, satisfies the biharmonic equation (6), will produce zero
displacements and stresses at large r, and can produce the stress representations in (7) and (8) according to
(5) is

o= / " LAB)Ka(Br) + BBk (Br)] cos pdp )

Here A(ff) and B(f) are to be determined and Ky( ) and K;() = —K|() are modified Bessel functions of the
second kind of respective orders 0 and 1 (Watson, 1944). Derivatives involving frK;(ffr) which are useful
for evaluating displacements and stresses in (5) are d/dr[frK, (fr)] = —p*rKo(Br) and V2[BrK;(Br) cos fiz] =
—2p2Ko(pr) cos fz. The integral representation of ¢, but not its derivatives in displacements and stresses,
may be formal because of singular behaviour at f = 0. However, this is overcome easily as shown be-
low.

Carrying out the derivatives of ¢ to create o,.(a,z) and 0..(a,z), expressions for 4(f), B(f}) in terms of
G(f),H(p) are then found as

A(B) = 1 G(B) + 2 H () (10)
B(B) = 03G(B) + oaH (B)
where
a 1

o] = ﬁz_A K1 (Ba) [BaW (Ba) — 2(1 — v)]

a 1
o = " P4 K (Pa) (1 =2v)W(Ba) — pa]
e 1 (11)
} B4 Ki(pa)

a 1 1
“= T paKi(a) [WW) +%}
A= Ba*[W(pa) — 1] —2(1 —v)
W (pa) = Sl (12)

Ki(pa)
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With these values of A(f) and B(f), the boundary conditions for u,(a,z) and u,(a,z), using again the de-
rivatives of ¢ in (5), are

a/ooo[M1 (Ba)G(B) + My(Ba)H (B)]sin fzdf =0, |z| < h

@ [ (BRG(B) + My(a) ()] cos pzdf =240 [2 < "
where

Mi(a) = 52(1 )

Ma(a) = 7 [Ba(W(Ba) — 1) +2(1 — )W (Ba)] »

M;(Ba) = M>(Ba)

Mi(Ba) =5 o [Bal(3 = 20)W7(a) ~ 1) +4(1 = ) ()]

Ko(),K;() are monotonic functions of their arguments, and their ratio in () is also monotonic, so then
are M172>3_’4( )

To begin the process of satisfying the boundary conditions for a,.(a,z) and o,.(a,z) identically, let G(f5)
and H(p) be represented by Bessel function Neumann series (Watson, 1944, Section 16; Eswaran, 1990;
Verolino, 1998) to satisfy the odd or even f-conditions required by (7) and (8):

GB) =" G (B)

m=0

m=0

where J,,() is an mth order Bessel function of the first kind. The representation (15) is justifiable from the
work of Eswaran (1990). He showed that the Fourier transforms, G(f§) and H(f), of functions o,.(a,z) and
0..(a,z) which have compact support, being zero for |z| > A, can be represented in the Neumann series form
gt > o Swudmik(Ph). S, are coefficients of expansion and the exponent & lies in the range —1 <k <0. To
produce square root singularities k is set to zero.

The particular identities which will be used to satisfy the square root singular behaviour at » = a,z = +4,
are

/ Jimer (Bh)sin pzdB = 0, || > h
0
m T2m+l (Z/h)

= (Bl
o (16)
/ Jon(Bh) cos fzdB = 0, || >
0
m Tom(2/h)
= (-1 ﬁ7 2| <h

where T,,() is the mth-order Chebyshev polynomial of the first kind.
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These identities are particular cases of the Weber—Schafheitlin integrals (Watson, 1944, Section 13.4)
/ B (PR, (Bz)dp, s+t>w>—1 (17)
0

discontinuous at z = A, where, for integrals in (16), sin fz = \/nfz/2J,»(Pz) and cos fz = \/nfz/2J_ »(fz).

With the representations of G(f5) and H(f) of (15) substituted in the integral expressions (7) and (8) for
0,-(a,z) and 6,.(a,z) and then making use of the identities (16), the stress boundary conditions are auto-
matically satisfied as well as the singular behaviour at z = 44 being incorporated. (The remaining non-zero
stresses, oyo(a,z) and 0., (a, z), are also seen to be singular when the stress equilibrium equations are invoked.)

The two integral equations (13) resulting from displacements need to be solved for G(f) and H(f) or
equivalently for all G,, and H,, in (15). This is readily achieved by noting that for |z| < 4, z may be replaced
by z = hsin w and then introducing the Jacobi identities (Watson, 1944, Section 2.22)

sin fz = sin(phsin ) = 2 ZJZHI (ph) sin((2n + 1)w)
n=0
% (18)
cos iz = cos(fhsinw) = Z €200 (1) cos(2nw)
n=0
where ¢, is Neumann’s constant, taking the value 1 for n = 0, otherwise 2. With these identities and the
series for G(f8) and H(f) of (15) substituted in the two displacement integrals (13), then assuming inter-
changeability of integrations and summations, and finally equating left and right sides to cosine or sine

series terms, two infinite sets of linear equations arise in G,, and H,,, for n =0,1,2,... 0c0:
Z [CnLnGm + Dm.nHm] = 0
m;O (19)
[Em.,nGm + Fm,nHm] = 2//‘52(2 - En)
m=0
where

Con = / " My (Ba) s (B1)Tonr (B B
0

Dy = / " Ma(Ba) o (B Jonsr (B B
0 (20)

Epp = / " M (Ba) s (B) T () B
Fon = / " Ma(Ban(Bh) I (B1) AP

For the determination of the plug pull force, P, the substitution of the H(f3) series representation of (15)
into the Fourier cosine integral for a,.(a,z) of Eq. (8), then into the integration required in (2) for P, in-
terchanging integrals foh J,° (by Fubini’s theorem) and analytically integrating with the aid of the identity
(Watson, 1944, Section 13.4)

/ JZm(u)%du:E(z_EZm) (21)
0 u 2
produces the simple result

P = —2n*aH, (22)

From the linear sets of Egs. (19), H; is proportional to ¢., and, from (22), so is P.
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Viewed from afar, it is expected that the disturbance in the elastic media by the plug is equivalent to that
of a point load acting at the centre of the plug. This may be verified by looking at the large R(= vr? + z?)
behaviour for the integral expression for ¢. This is the same as regarding ¢ and /4 small relative to R, which
in turn is the same as forming small argument expansions of 4(ff) and B(f) and then explicitly evaluat-
ing the integral. With A(f), B(f) of Eq. (10) expressed in terms of G(f), H(p) in their series forms (15)
and expanding all the contained Bessel functions, straightforward algebra leads to the large R expression
for ¢:

2(l —v)p

This integral is formal in the sense that at § = 0 the integrand is singular of order 1/f. A simple way to

remove the formality is to subtract aH,(BroK;(Bro) cos fzy)/(2(1 — v) [32) where ry # 0, zg, Ry = /r§ + 25 are

any constant values. The displacements and stresses are not affected by the addition of a constant to ¢.
By making use of Basset’s integral (Watson, 1944, Section 13.21)

¢~/OOO {O(l)GoKo(ﬁr) cos fz + < aHy 2+O(1)>[3rK1([3r) cosﬁz}dﬁ, R=Vr+2  (23)

i T
/0 Ko(pr)cos pzdf = R (24)
and a V? integration of it as
~ 1 i
/ E[ﬁr[(l(ﬁr) COSﬁZ—ﬁroKl(ﬁro) COS[))Z()] dﬁ: —E(R —Ro) (25)
0
then the dominant behaviour of ¢ (for displacements and stresses) for large R is
P
~—— R 26
¢ 8n(l —v) (26)

which is the expected auxiliary function representation for a Kelvin point load (Mindlin, 1936; Timoshenko
and Goodier, 1951).

To complete the full representation of displacements and stresses, expressions for displacements and
stresses for all r and z from ¢-derivatives of Eq. (5) in terms of G(f) and H(f) are as follows

w(ri2) = - / "ML (Br)G(B) + Ma(Br)H (B)] sin p=dp

w(r2) = 5 / " ML(BR)G(B) + Ma(BrYH(B)) cos pzd

onlriz) = | " Ms(BAGB) + Me(Br)H(B)) sin =dp
0 @7)

0u(ri2) = [ DHBIG) + M) H ()] cos

w(r.2) = [ Mo (BrIGS) + (Bt ()] sin o

0u(ri2) = [ M (BIG(B) + Mia()H ()] sin
The My 1»(fr) are

wi(pr) = (2 )F(Br {201 =v) = paw (o)1 = () z(pr)] |

I
a
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wa(pr) = (2 )F(pr){ Ba| (%) Z(pr)w*(pa) — 1] + w(pa) [1 =20+ (=) 2(pr)| }

= (G)re

s
)= (5)F@n {6 - 2mzewga) - (£) +40 -z w(sa
w(

emlor ()

[ (Br) W2 (fa) — ( )}+2(1_v)z(ﬁr)W(ﬁa)}

(Br) (ﬂr>{ﬁ2a2(§)2[(%)zmr)Wz(ﬁa) — 1] + paW (Ba)[1 = (%) z(pr)] - 201 - v)}
Ma(pr) = F(pr{ (1 = 20w g [ () 28r) —1] - e (2) g [ - (4) 2000
(-}
wa(pr) = F(pr{ e (2 ) wpa) [ (5) z0pr) — 1] |

My(Br) = F(Br){2(1 = v) = at (Ba) 1 = (1 = 2v)( =) 2(pr)| }
Mio(Br) = F(Br){ (1 = 20 (Ba) |1 + (2 )Z(pr)] = paw (Ba) 1 = (1 = 29) (% ) z(pr) w2 (Ba) | }
My (Br) = par(Br){pa] (%) = Z(Br)w* (Ba) | +22(pr) W (pa)}

() = par (pr)] () = 328w ) - 22 =) 209 (o) + pav g () - 2090}

fa

a1l K(pr) _ Ko(pr) _ W(pr)
PO = aka "k A k)

(28)

When » = a, F(fa) = 1/4, Z(fa) = 1 and the expressions for M|,34(fa) reduce to those already given in
(14) as well as Ms(fa) = 1, Ms(fa) = 0, M7(fa) = 0, Mg(fa) = 1, consistent with the original definitions of
o,(a,z) and 0,.(a,z). The remaining My 1,(fa) are as follows
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My(Ba) = {2(1 ) — 2vpal ()}
Mio(a) = {Ba[l — (1~ 20)W>(Ba)] —2(1 ~ 20)W ()}
M (pa) =2 (g1 — w2 ()] — 20 ()}

_Ba Ly 3w pay - 22— v) L W (Ba
(o) =Et {1 = 3w pa) 20— v g wipo )

The asymptotic expansion of these My 15(fla) determines the singular nature of oyp(a,z) and o..(a,z). Thus

Mo (pa) ~2v+0<1>

Pa
1
Mlo(ﬁa) ~ =2y + O(%)
1 (30)
M]](ﬁa) ~ 1 —‘rO(%)
1
Mlz(ﬂa) ~2 + O(%>
Further integral identities (Watson, 1944, Section 13.4) required, which are a counterpart to Egs. (16), are
0 -1 my2m
| matpmysinpeap =
0 VZ2 — 2z + Vz2 — 2™
1 . .
= ———=sin2msin" (z/h)], |z| <h
A /h2 _ ZZ
[ey] (_1)m+1h2m+1 (31)
Jom h) cos fzdf = , |zl >h
/0 2 +1(ﬂ ) ﬁ ﬁ M[Z+m]2nl+1 | |
1 -
:ﬁcos[(2m+l)sm I(Z/h)}, |Z| <h
— Z

On evaluating integrals for gg9(a,z) and o..(a, z) of Egs. (27), with the asymptotic leading terms of My »(fa)
of (30) and replacing G(f5) and H(f5) by their infinite summations, it is clear from the first of identities (16)
and (31) that the expected square root singularities are approached from both sides of |z| = 4. The second
of the identities (31) is used for the radial misfit case.

4. Analytical solutions for radial misfit

The solution procedure for radial misfit of the plug is essentially the same as for the plug pull, the
differences arising from the reversed symmetry of displacements and stresses. The presentation is thereby
briefer.

For 0,.(a,z), define the Fourier cosine transform pair

G(ﬁ) = g \/00O O-rr<aaz) Cos ﬁZdZ = % Ah Grr(a,Z) COS ﬁZdZ

T

. (32)
7rlas) = [ G(B)cos pa
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Similarly for o,.(a,z), define the Fourier cosine transform pair

A e . 2 [h .
H(p) = - /o 0,.(a,z)sin fzdz = - /0 0..(a,z)sin fzdz -
z\a,2) = " i zd
oufas) = [ H(p)sinprap
An appropriate auxiliary function ¢, antisymmetrical in z, is
6= [ KB + BBk () sin prap (34)

A(p) and B(p) again follow from equating ¢-derived expressions for o,.(a,z) and ¢,.(a,z) and their rep-
resentations above:

A(p) = —uG(B) + a2t (B)

B(B) = —03G(B) + oauH (B) (35)

where o34 are those for the plug pull problem in Eq. (12).
The boundary conditions for ¢-derived u,(a,z) and u.(a,z), with the expressions above for A(f) and
B(p), produce

a / "My () G() — Ma(Ba)H (B)] cos pzdf = 2ud,, |2 <

«f " [ M3(Ba) G(B) + Mi(Pa)H ()] sin fzdf = 0. |z| < (36)

Again, M, 34 are those of Eq. (14).
Now introduce the Bessel function Neumann series for G(ff) and H(f)

H(ﬁ) = ZI_[InJZnH»l(ﬁh)
m=0
With the representations of G(f) and H(f5) of (37) substituted in the integral expressions (32) and (33) for
o,(a,z) and 6,.(a,z) and then making use of the identities (16), the stress boundary conditions are auto-
matically satisfied and produce singular behaviour at z = +A.

The two integral equations (36) resulting from displacements need to be solved for G(ff) and H(f) or
equivalently for all G,, and H,, in (37). With the Jacobi identities (18) and the series for G(ff) and H(f5) of
(37) substituted in the two displacement integrals (36) producing Fourier series, the two infinite sets of
linear equations for G,, and H,,, forn =0,1,2,...,00 are

[CoonGn + DyH,) = 2016,(2 — €,)

M 10

[Em.,nGm + Fm,nHm] =0

i
(=]
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where

Con = / " My (Ba) o (B ) (B 4B
0

Dy = — / M (Ba) o (BH) o (B 4B
(39)

By = — /0 " My (Ba)an (B onss (B) B

Fyp = / " Ma(Ba)am s (Bh)Jan s (B) dB
0

For the determination of the average pressure, Q, the substitution of the G(f8) series representation of (37)
into the Fourier cosine integral for o,,(a,z) of Eq. (33), then into the integration required in (4) for Q, and
using identity (21),

T

0= o Go (40)

From the linear sets of Egs. (38), Gy is proportional to J,, and, from (40), so is Q. All other G,, and H,, are
also proportional to J, and hence to Q.

The far field behaviour of the auxiliary function ¢ is found in straightforward manner by making small
argument expansions of 4(f) and B(p) to produce

o~ [ {16 o - [ s (122 ) o e } B Eas

By using the z integration of Basset’s integral (24)

| Kot ™5 ap =S o (ﬁ ! ) (@)
and the z derivative of Eq. (25)
| i = ap =3 @3)

the dominant behaviour of ¢ for large R is

o~ E)e (5295 - ()i

The first term above corresponds to a centre of expansion and the second to an axial double force (Mindlin,
1936; Timoshenko and Goodier, 1951).

The complete set of displacements and stress expressions for arbitrary » and z follow immediately from
the plug pull expressions (27)-(30) by noting the following changes when passing from the plug pull to
radial misfit cases:

{'sin,cos } — { cos,sin }

{M17M27M3aM47M57M63M77M83M97M107M117M12}
— My, — M>, — M3, My, Ms, — Mg, — M7, Mg, My, — Mo, My;, — My>} (45)
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5. Numerical results

With a change of variable from fh to u, the integral expressions for all C,, ., Dy sy Evn sy Frny of Egs. (20)
and (39) take the form

p / " M () ) d (46)

where i = 1,2,3,4; p=a/h is the aspect ratio and b and ¢ are positive integers or zero.
In order to evaluate these integrals, their asymptotic behaviours for large u are examined. Firstly an
asymptotic expansion for W(u) is

11 1 1 I 271 1 1 11 1
W) = 1 3 3 63 7 899 8 (_8>

T2u 8w 8 18 2w 1004w 164

47
: ()
suitable for calculating W (u) for u > 100 for 14 significant figure accuracy. Single term asymptotic be-
haviours for M ,34(u) then are found to be

MWAN—MI—@i+O<1>

u?

u?

Mﬁﬁw—%l—@i+o<l)

2
1 1
i.e., Mi 34 ~ s/u, where s takes the values —2(1 — v) or —(1 — 2v). Because M;(u) are monotonic with large

argument behaviour defined by (48), all integrals (46) exist, based on the identities (Watson, 1944, Section
13.41,3)

1 _ 2sin(b —c)n/2
QV,A () ) du == FEEZOTE e 20 (49)
00 p2u )
loo = /0 170 W du = h(1/p)Ko(1/p) (50)

and Io( ) is the zero-order modified Bessel function of the first kind.

Analytical integrations of expressions (46) do not appear to be possible. Moreover, direct numerical
quadrature is difficult to do accurately because of the large argument oscillatory behaviour and modest
decay of the J,(u) and J.(u) Bessel functions with asymptotic property J,(u) ~ 1//nucos(u — bn/2 — n/4).
Some alleviation of this difficulty can be achieved by using the identities (49) and (50) to modify the original
integrations of (46):

p [ o - P du s potie. be £ 0
OOO ' spu (51)

However, obtaining more than three decimal place accuracy is hard to achieve, particularly as the orders b
and ¢ increase.
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Table 1

Plug pull P* = P/uad. with Poisson’s ratio v = 0.3 for various aspect ratios, p = a/h, compared with the approximate results of
Rajapakse and Gross (1996)

P 8 4 2 1 0.8 04 0.2
Rajapakse and Gross (1996) 7.73 9.47 11.97 17.92 24.22 37.35
Present P* 7.668 9.335 11.761 15.426 16.993 23.659 34.505
Table 2
Coefficients Gy 3/uad, Hy 3/pad with Poisson’s ratio v=0.3 and p=a/h =1
Gy G, G, Gs H, H, H, H;
Plug pull § = 9, 0.20133 —0.07596 0.04525 —0.03193 —0.78151 —0.10675 0.03119  —0.02118
Radial misfit 6 = 0, —1.88890 —0.50575 0.08106 —0.04704 —0.40954 0.14987 —0.08985 0.06372

Another approach is to integrate numerically accurately up to a finite ¥ = u, and then to analytically
integrate complete integrand asymptotic expansions (including the W (pu) defined by (47)) in terms of cosine
and sine integrals. u, needs to be determined for each combination of b and ¢ such that the asymptotic
expansions are valid.

A more general route, which is used below, is to use the method of Lucas (1995), specifically designed for
integrals (46). This recognises that an algebraically damped, single component oscillatory function can be
integrated between its zeros to provide an infinite alternating series summable by e-convergence methods
(Sidi, 1988). Then the asymptotic product of J,()J.() is proportional to the form cosBcos C which is
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Fig. 2. Plug pull. Borehole surface stresses in plug region, z/h = 0-2, aspect ratio p = a/h = 1,4, 8, Poisson’s ratio v = 0.3. (a) Radial
stress o,,(a,z)a® /uP*; (b) shear stress 6,.(a,z)a*/uP*; (c) hoop stress g(a,z)a*/uP*; (d) axial stress o..(a,z)a?/pP*.
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convertible to the sum of two components 1/2cos(B + C), 1/2cos(B — C). Using the association of Bessel
functions of the second kind ¥,()Y.() at large argument with sin Bsin C, then J,( )J.() can be replaced by
the sum of the two components 1/2[J,()J.() + ¥,()¥.()] and 1/2[J,()J.() — ¥()Y.()]. The infinite values
of ¥,.(0) are avoided by integrating the original integrand up to a finite u, determined by the zeros of the
two components and then summing the alternating series for the two components arising from integrals
starting at u,. The monotonic behaviour of M;(pu) does not alter the oscillatory behaviour of J,()J.() and
the method still applies. However, large u values will require the asymptotic expansion of W (pu) which are
components of M;(pu).

The infinite systems of Eqgs. (19) and (38) for determining G,, and H,, are truncated at m =n =N to
provide a system of 2N + 2 equations under the assumption that increasing N will provide numerical
convergence. This is found to be so.

The convergent results for plug pull P* = P/uad., evaluated from Eq. (22) with v = 0.3 for various p are
shown in Table 1, where a comparison with the approximate results of Rajapakse and Gross (1996) is also
given. The first few significant figures are obtained with N relatively small but the convergence for later

Table 3
Average radial stress O* = Q/uad, with Poisson’s ratio v = 0.3 for various aspect ratios, p = a/h, in the radial misfit case
p 8 4 2 1 0.8 0.4 0.2
o —7.716 —5.219 —3.784 —2.967 —2.790 —2.415 —2.214
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Fig. 3. Radial misfit. Borehole surface stresses in plug region, z/h = 0-2, aspect ratio p = a/h = 0.2,1,4,8, Poisson’s ratio v = 0.3.
(a) Radial stress o,.(a,z)a/ud,; (b) shear stress g,.(a,z)a/ud,; (c) hoop stress agy(a,z)a/ud,; (d) axial stress o..(a,z)a/po,.
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figures is slower. For example, at p=1 and N =10,1,2,4,8,16] the corresponding values of P* are
[15.3626,15.4182,15.4229,15.4252, 15.4260, 15.4263]. Expectedly, for a short plug with high p the con-
vergence is quicker and conversely so for a long plug. For reference, the coefficients G, ; and H, 5 are given
in Table 2 for both the plug pull and radial misfit cases when v = 0.3 and p = 1.

Fig. 2(a—d) show the scaled stresses [6,,(a,z),0.(a,z), 6p9(a,z),0(a,z)]a®/P*,z/h = 0-2,p = 1,4, 8, for the
plug pull equations (27) at » = a and the series expansions for G(f§) and H(f) of (15). This requires the Weber—
Schafheitlin identities of (21) for ¢,,(a,z) and ¢,.(a,z) and integrals of the form [~ M;(Ba)J,(Bh) sin fzdz for
oe9(a,z) and g..(a,z). These integrals are also evaluable with the method of Lucas (1995) by replacing a ¥, ()
with cosine or sine. The square root behaviour is evident in all figures and on both sides of z = & for agy(a, z)
and o..(a,z). Stresses for » > a are more easily evaluated because of the damping factor, exp(—f(r — a)) at
large f, arising from F(fr) and Z(fr) of Egs. (28) which in turn are dependent on Ky(fr)/K;(fa) and
K, (pr)/K:(pa).

To complete the numerical exemplification, values of O* = Q/pad, with v = 0.3 defined by Eq. (40) for
radial misfit are given in Table 3. These values are in reasonable agreement with those read from a graph
presented by Rajapakse and Gross (1996). Convergence rates with N are similar to those of the plug pull
case, e.g.,atp=1and N =0, 1,2, 4,8, 16] the corresponding values of O* are [—2.8987, —2.9641, —2.9660,
—2.9667,—-2.9671,—2.9672]. Stresses [0,.(a,z),0,.(a,z),000(a,z),0..(a,z)]a/ud,, z/h =0—2, p=0.2,1,4,8,
are shown in Fig. 3(a—d). Expected reversals of symmetry in z are seen. As p becomes small (i.e., long plugs),
apo(a,z) + o,.(a,z) — 0 over much of |z|/h < 1 as seen in Fig. 3(a) and (c) as expected when plain strain
conditions are approached.

6. Concluding remarks

By using integrals based on Love’s auxiliary biharmonic function, which provides satisfaction of iso-
tropic displacement and stress conditions, analytical solutions to the original mixed boundary problems
have been found, albeit in terms of infinite series whose coefficients are determined from an infinite system
of linear equations.

The main point to be emphasised in this paper is the recognition and incorporation of the square root
singularity in this mixed boundary value problem. This is done by using Neumann Bessel function series
representations of the kernels of shear and radial stress integral expressions so that the stress boundary
conditions are exactly satisfied with the use of discontinuous Weber—Schafheitlin integrals. The coefficients
of the series are found from the displacement conditions across the plug surface which produce an infinite
set of linear equations each term consisting of an infinite integral of the product of a monotonic function
and two Bessel functions. The integrands which are asymptotically oscillatory and algebraically damped are
well calculated using a recent method of Lucas (1995). The truncation of the infinite system to low orders is
sufficient to give moderately accurate results.
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