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Abstract

An analytical and numerical analysis is made of an isotropic elastic medium containing a cylindrical borehole of

infinite length in which is located a tightly fitting rigid plug of finite length. Both the pulling of the plug and the oc-

currence of a radial misfit are considered. The boundary conditions are mixed, with zero radial and shear stresses at the

bore surface outside the plug region and displacements given across the plug surface. Using integral representations for

a Love auxiliary function, the crucial step is the analytical incorporation of the square root singularity at boundary

condition junctions. This is done by using Neumann Bessel function series representations of the integrand kernels of

boundary condition stresses such that discontinuous Weber–Schafheitlin integrals can be used to satisfy these condi-

tions exactly. Displacement conditions are solved in terms of integrals of products of Bessel functions. The solutions

provide expressions for the far field behaviour of a Kelvin point load solution for the plug pull case and a combined

centre of expansion plus double force for radial misfit. Numerical results show good convergence of the method and the

correct singular behaviours of borehole surface stresses.
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1. Introduction

Practical cases of isotropic media containing cylindrical boreholes, within which are rigid plugs either
being withdrawn by bore axial forces or causing radial pressures due to radial misfit, have been examined
by Rajapakse and Gross (1996). In both cases, idealised mathematical models to analyse the problem
assume the medium to be of infinite extent, axisymmetric in behaviour of displacements and stresses relative
to the bore axes, and boundary conditions on the borehole surface which are zero radial and shear stresses
outside the plug region and radial and axial displacements at the plug surface.
In these cases of mixed boundary conditions there is a square root singularity for stresses at the

boundary condition junctions. This degree of singularity may be proved by the analysis of Zak (1964),
justified by the work of Ting et al. (1985), who showed that the dominant behaviour corresponds to that at
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the corner of a two-dimensional wedge in plane strain of opening angle p (Williams, 1952). When exam-
ining the method of Rajapakse and Gross (1996), which is one of Fourier integral transforms and solution
of resulting multiple integral equations using Green’s functions and numerical quadrature, no use is made
of the knowledge of this singularity other than to confirm that numerical results suggest this type of be-
haviour. Here it will be shown that the singular behaviour can be incorporated into the solution process to
obtain series solutions in terms of integrals whose coefficients show good numerical convergence. The
crucial idea is in the implementation of discontinuous integrals of Weber–Schafheitlin type involving the
products of Bessel functions of the first kind. By representing the radial and shear stresses as Fourier cosine
and sine integrals and letting their corresponding inversions be represented by Bessel function Neumann
series these discontinuous integrals enable the stress conditions to be satisfied identically. The remaining
displacement conditions can then be solved readily in terms of Fourier cosine and sine integrals. The same
type of procedure has been applied to Laplacean equations in electrostatics by Verolino (1998) and in
hydrology by Robinson (2001). Although the work of Sneddon (1966) is extensive in its treatment of mixed
boundary value problems and integral equations, the method applied here is not mentioned.
In order to make numerical computations it is necessary to evaluate infinite integrals whose integrands

are products of two Bessel functions of the first kind of arbitrary integer orders and an ultimately
monotonic function of the integration variable. Because of the, sometimes, complicated oscillatory nature
of the integrand and the magnitude of large argument asymptotic behaviour which is algebraic, the ac-
celerated convergence procedures of Lucas (1995) are used.
The following sections define the problem for both plug pull and radial misfit, express axisymmetric

displacements and stresses in terms of Love’s auxiliary function, and analytically and numerically solve
both problems, showing that the remote behaviour for the former is that of the Kelvin solution for a
concentrated force and the latter that of a centre of dilatation combined with a double force.

2. Problem formulations

In Fig. 1 are shown local sections of an infinite isotropic elastic medium containing cylindrical boreholes
of radii a in which are tightly fitting rigid plugs of lengths 2h. The axes are the natural ones of z along the
bore axes and r radial with origins at the centres of plugs.

Fig. 1. Schematic for a borehole containing a tightly fitting, rigid plug. (a) Plug pull case, (b) radial misfit.
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Fig. 1a represents the plug pull problem with an bore axial force, P. Boundary conditions at r ¼ a in this
case are

rrrða; zÞ ¼ 0; jzj > h

rrzða; zÞ ¼ 0; jzj > h

urða; zÞ ¼ 0; jzj < h

uzða; zÞ ¼ dz; jzj < h

ð1Þ

These axisymmetric conditions require that radial stress rrrðr; zÞ and displacement urðr; zÞ are antisymmet-
rical with respect to z, and shear stress rrzðr; zÞ and displacement uzðr; zÞ are symmetrical with respect to z.
A relationship connecting P and stress rrz, and ultimately dz, is

P ¼ �2pa
Z h

�h
rrzða; zÞdz ð2Þ

The negative sign is introduced because rrzða; zÞ is negative along the contact surface.
The radial misfit problem is depicted in Fig. 1b with boundary conditions

rrrða; zÞ ¼ 0; jzj > h

rrzða; zÞ ¼ 0; jzj > h

urða; zÞ ¼ dr; jzj < h

uzða; zÞ ¼ 0; jzj < h

ð3Þ

Here radial stress rrrðr; zÞ and displacement urðr; zÞ are symmetrical with respect to z, and shear stress
rrzðr; zÞ and displacement uzðr; zÞ are antisymmetrical with respect to z.
Average uniform radial pressure, Q, may be expressed as

Q ¼ 1

2h

Z h

�h
rrrða; zÞdz ð4Þ

and is also ultimately proportional to dr.

3. Analytical solutions for plug pull

Axisymmetric displacements and stresses may be defined in terms of Love’s auxiliary function, /, in
cylindrical coordinates (Love, 1944; Mindlin, 1936; Timoshenko and Goodier, 1951), as

ur ¼ � 1

2l
o2/
oroz

uz ¼
1

2l
2ð1
�

� mÞr2 � o2

oz2

�
/

rrr ¼
o

oz
mr2

�
� o2

or2

�
/

rhh ¼
o

oz
mr2

�
� 1

r
o

or

�
/

rzz ¼
o

oz
ð2
�

� mÞr2 � o2

oz2

�
/

rrz ¼
o

or
ð1
�

� mÞr2 � o2

oz2

�
/

ð5Þ
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and uh ¼ 0 ¼ rrh ¼ rzh. Elastic constants are Poisson’s ratio m and shear modulus l ¼ E=ð1þ 2mÞ with E as
Young’s modulus. r2 ¼ o2=or2 þ ð1=rÞo=or þ o2=oz2 and / satisfies the biharmonic equation

r4/ ¼ 0 ð6Þ
For the Fourier sine transform pair involving the antisymmetrical rrrða; zÞ, define

GðbÞ ¼ 2

p

Z 1

0

rrrða; zÞ sin bzdz ¼ 2

p

Z h

0

rrrða; zÞ sin bzdz

rrrða; zÞ ¼
Z 1

0

GðbÞ sin bzdb
ð7Þ

Similarly for the symmetrical rrzða; zÞ, define the Fourier cosine transform pair

HðbÞ ¼ 2

p

Z 1

0

rrzða; zÞ cos bzdz ¼
2

p

Z h

0

rrzða; zÞ cos bzdz

rrzða; zÞ ¼
Z 1

0

HðbÞ cos bzdb
ð8Þ

An auxiliary function / which is symmetrical in z, satisfies the biharmonic equation (6), will produce zero
displacements and stresses at large r, and can produce the stress representations in (7) and (8) according to
(5) is

/ ¼
Z 1

0

AðbÞK0ðbrÞ½ þ BðbÞbrK1ðbrÞ
 cos bzdb ð9Þ

Here AðbÞ and BðbÞ are to be determined and K0ð Þ and K1ð Þ ¼ �K 0
0ð Þ are modified Bessel functions of the

second kind of respective orders 0 and 1 (Watson, 1944). Derivatives involving brK1ðbrÞ which are useful
for evaluating displacements and stresses in (5) are d=dr½brK1ðbrÞ
 ¼ �b2rK0ðbrÞ and r2½brK1ðbrÞ cos bz
 ¼
�2b2K0ðbrÞ cos bz. The integral representation of /, but not its derivatives in displacements and stresses,
may be formal because of singular behaviour at b ¼ 0. However, this is overcome easily as shown be-
low.
Carrying out the derivatives of / to create rrrða; zÞ and rrzða; zÞ, expressions for AðbÞ;BðbÞ in terms of

GðbÞ;HðbÞ are then found as
AðbÞ ¼ a1GðbÞ þ a2HðbÞ
BðbÞ ¼ a3GðbÞ þ a4HðbÞ

ð10Þ

where

a1 ¼
a

b2D

1

K1ðbaÞ
baW ðbaÞ½ � 2ð1� mÞ


a2 ¼ � a

b2D

1

K1ðbaÞ
ð1½ � 2mÞW ðbaÞ � ba


a3 ¼ � a

b2D

1

K1ðbaÞ

a4 ¼ � a

b2D

1

K1ðbaÞ
W ðbaÞ
�

þ 1

ba

�
D ¼ b2a2 W 2ðbaÞ

�
� 1
�
� 2ð1� mÞ

ð11Þ

W ðbaÞ ¼ K0ðbaÞ
K1ðbaÞ

ð12Þ
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With these values of AðbÞ and BðbÞ, the boundary conditions for urða; zÞ and uzða; zÞ, using again the de-
rivatives of / in (5), are

a
Z 1

0

½M1ðbaÞGðbÞ þM2ðbaÞHðbÞ
 sin bzdb ¼ 0; jzj < h

a
Z 1

0

½M3ðbaÞGðbÞ þM4ðbaÞHðbÞ
 cos bzdb ¼ 2ldz; jzj < h
ð13Þ

where

M1ðbaÞ ¼
1

D
2ð1� mÞ

M2ðbaÞ ¼
1

D
ba W 2ðbaÞ
��

� 1
�
þ 2ð1� mÞW ðbaÞ

�
M3ðbaÞ ¼ M2ðbaÞ

M4ðbaÞ ¼
1

D
1

ba
ba ð3
��

� 2mÞW 2ðbaÞ � 1
�
þ 4ð1� mÞW ðbaÞ

�
ð14Þ

K0ð Þ;K1ð Þ are monotonic functions of their arguments, and their ratio in W ð Þ is also monotonic, so then
are M1;2;3;4ð Þ.
To begin the process of satisfying the boundary conditions for rrrða; zÞ and rrzða; zÞ identically, let GðbÞ

and HðbÞ be represented by Bessel function Neumann series (Watson, 1944, Section 16; Eswaran, 1990;
Verolino, 1998) to satisfy the odd or even b-conditions required by (7) and (8):

GðbÞ ¼
X1
m¼0

GmJ2mþ1ðbhÞ

HðbÞ ¼
X1
m¼0

HmJ2mðbhÞ ð15Þ

where Jmð Þ is an mth order Bessel function of the first kind. The representation (15) is justifiable from the
work of Eswaran (1990). He showed that the Fourier transforms, GðbÞ and HðbÞ, of functions rrrða; zÞ and
rzzða; zÞ which have compact support, being zero for jzj > h, can be represented in the Neumann series form
b�kP1

m¼0 SmJmþkðbhÞ. Sm are coefficients of expansion and the exponent k lies in the range �16 k6 0. To
produce square root singularities k is set to zero.
The particular identities which will be used to satisfy the square root singular behaviour at r ¼ a; z ¼ �h,

are Z 1

0

J2mþ1ðbhÞ sin bzdb ¼ 0; jzj > h

¼ ð�1Þm T2mþ1ðz=hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � z2

p ; jzj < hZ 1

0

J2mðbhÞ cos bzdb ¼ 0; jzj > h

¼ ð�1Þm T2mðz=hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � z2

p ; jzj < h

ð16Þ

where Tmð Þ is the mth-order Chebyshev polynomial of the first kind.
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These identities are particular cases of the Weber–Schafheitlin integrals (Watson, 1944, Section 13.4)Z 1

0

b�wJsðbhÞJtðbzÞdb; sþ t > w > �1 ð17Þ

discontinuous at z ¼ h, where, for integrals in (16), sin bz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pbz=2

p
J1=2ðbzÞ and cos bz ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pbz=2

p
J�1=2ðbzÞ.

With the representations of GðbÞ and HðbÞ of (15) substituted in the integral expressions (7) and (8) for
rrrða; zÞ and rrzða; zÞ and then making use of the identities (16), the stress boundary conditions are auto-
matically satisfied as well as the singular behaviour at z ¼ �h being incorporated. (The remaining non-zero
stresses, rhhða; zÞ and rzzða; zÞ, are also seen to be singular when the stress equilibrium equations are invoked.)
The two integral equations (13) resulting from displacements need to be solved for GðbÞ and HðbÞ or

equivalently for all Gm and Hm in (15). This is readily achieved by noting that for jzj6 h, z may be replaced
by z ¼ h sinx and then introducing the Jacobi identities (Watson, 1944, Section 2.22)

sin bz ¼ sinðbh sinxÞ ¼ 2
X1
n¼0

J2nþ1ðbhÞ sinðð2nþ 1ÞxÞ

cos bz ¼ cosðbh sinxÞ ¼
X1
n¼0

�2nJ2nðbhÞ cosð2nxÞ
ð18Þ

where �n is Neumann’s constant, taking the value 1 for n ¼ 0, otherwise 2. With these identities and the
series for GðbÞ and HðbÞ of (15) substituted in the two displacement integrals (13), then assuming inter-
changeability of integrations and summations, and finally equating left and right sides to cosine or sine
series terms, two infinite sets of linear equations arise in Gm and Hm, for n ¼ 0; 1; 2; . . . ;1:X1

m¼0
Cm;nGm½ þ Dm;nHm
 ¼ 0

X1
m¼0

Em;nGm½ þ Fm;nHm
 ¼ 2ldzð2� �nÞ
ð19Þ

where

Cm;n ¼
Z 1

0

M1ðbaÞJ2mþ1ðbhÞJ2nþ1ðbhÞdb

Dm;n ¼
Z 1

0

M2ðbaÞJ2mðbhÞJ2nþ1ðbhÞdb

Em;n ¼
Z 1

0

M3ðbaÞJ2mþ1ðbhÞJ2nðbhÞdb

Fm;n ¼
Z 1

0

M4ðbaÞJ2mðbhÞJ2nðbhÞdb

ð20Þ

For the determination of the plug pull force, P, the substitution of the HðbÞ series representation of (15)
into the Fourier cosine integral for rrzða; zÞ of Eq. (8), then into the integration required in (2) for P, in-
terchanging integrals

R h
0

R1
0
(by Fubini’s theorem) and analytically integrating with the aid of the identity

(Watson, 1944, Section 13.4)Z 1

0

J2mðuÞ
sin u
u

du ¼ p
2
ð2� �2mÞ ð21Þ

produces the simple result

P ¼ �2p2aH0 ð22Þ
From the linear sets of Eqs. (19), H0 is proportional to dz, and, from (22), so is P.
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Viewed from afar, it is expected that the disturbance in the elastic media by the plug is equivalent to that
of a point load acting at the centre of the plug. This may be verified by looking at the large Rð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
)

behaviour for the integral expression for /. This is the same as regarding a and h small relative to R, which
in turn is the same as forming small argument expansions of AðbÞ and BðbÞ and then explicitly evaluat-
ing the integral. With AðbÞ;BðbÞ of Eq. (10) expressed in terms of GðbÞ;HðbÞ in their series forms (15)
and expanding all the contained Bessel functions, straightforward algebra leads to the large R expression
for /:

/ �
Z 1

0

Oð1ÞG0K0ðbrÞ cos bz
(

þ aH0

2ð1� mÞb2

 
þOð1Þ

!
brK1ðbrÞ cos bz

)
db; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
ð23Þ

This integral is formal in the sense that at b ¼ 0 the integrand is singular of order 1=b2. A simple way to
remove the formality is to subtract aH0ðbr0K1ðbr0Þ cos bz0Þ=ð2ð1� mÞb2Þ where r0 6¼ 0, z0, R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ z20

p
are

any constant values. The displacements and stresses are not affected by the addition of a constant to /.
By making use of Basset’s integral (Watson, 1944, Section 13.21)Z 1

0

K0ðbrÞ cos bzdb ¼ p
2R

ð24Þ

and a r2 integration of it asZ 1

0

1

b2
brK1ðbrÞ cos bz½ � br0K1ðbr0Þ cos bz0
db ¼ � p

2
ðR� R0Þ ð25Þ

then the dominant behaviour of / (for displacements and stresses) for large R is

/ � P
8pð1� mÞR ð26Þ

which is the expected auxiliary function representation for a Kelvin point load (Mindlin, 1936; Timoshenko
and Goodier, 1951).
To complete the full representation of displacements and stresses, expressions for displacements and

stresses for all r and z from /-derivatives of Eq. (5) in terms of GðbÞ and HðbÞ are as follows

urðr; zÞ ¼
a
2l

Z 1

0

M1ðbrÞGðbÞ½ þM2ðbrÞHðbÞ
 sin bzdb

uzðr; zÞ ¼
a
2l

Z 1

0

M3ðbrÞGðbÞ½ þM4ðbrÞHðbÞ
 cos bzdb

rrrðr; zÞ ¼
Z 1

0

M5ðbrÞGðbÞ½ þM6ðbrÞHðbÞ
 sin bzdb

rrzðr; zÞ ¼
Z 1

0

M7ðbrÞGðbÞ½ þM8ðbrÞHðbÞ
 cos bzdb

rhhðr; zÞ ¼
Z 1

0

M9ðbrÞGðbÞ½ þM10ðbrÞHðbÞ
 sin bzdb

rzzðr; zÞ ¼
Z 1

0

M11ðbrÞGðbÞ½ þM12ðbrÞHðbÞ
 sin bzdb

ð27Þ

The M1–12ðbrÞ are

M1ðbrÞ ¼
r
a

� �
F ðbrÞ 2ð1

n
� mÞ � baW ðbaÞ 1

h
� r

a

� �
ZðbrÞ

io
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M2ðbrÞ ¼
r
a

� �
F ðbrÞ ba

r
a

� �
ZðbrÞW 2ðbaÞ

hn
� 1
i
þ W ðbaÞ 1

h
� 2m þ r

a

� �
ZðbrÞ

io

M3ðbrÞ ¼
r
a

� �
F ðbrÞ ba ZðbrÞW 2ðbaÞ

hn
� r

a

� �i
þ 2ð1� mÞZðbrÞW ðbaÞ

o

M4ðbrÞ ¼
r
a

� �
F ðbrÞ ð3

n
� 2mÞZðbrÞW 2ðbaÞ � r

a

� �
þ 4ð1� mÞZðbrÞW ðbaÞ

þ b2a2W ðbaÞ ZðbrÞ
h

� r
a

� �io

M5ðbrÞ ¼ F ðbrÞ b2a2
r
a

� �2 a
r

� �
ZðbrÞW 2ðbaÞ

h�
� 1
i
þ baW ðbaÞ 1

h
� r

a

� �
ZðbrÞ

i
� 2ð1� mÞ

�

M6ðbrÞ ¼ F ðbrÞ ð1
�

� 2mÞW ðbaÞ r
a

� �
ZðbrÞ

h
� 1
i
� b2a2

r
a

� �2
W ðbaÞ 1

h
� a

r

� �
ZðbrÞ

i

þ ba 1

�
� r

a

� �2��

M7ðbrÞ ¼ F ðbrÞ b2a2
r
a

� �
W ðbaÞ r

a

� �
ZðbrÞ

hn
� 1
io

M8ðbrÞ ¼ F ðbrÞ b2a2
r
a

� �2 a
r

� �
ZðbrÞW 2ðbaÞ

h�
� r

a

� �i
� r

a

� �
baW ðbaÞ � 1

h
� r

a

� �
ZðbrÞ

i

� 2ð1� mÞ r
a

� ��

M9ðbrÞ ¼ F ðbrÞ 2ð1
n

� mÞ � baW ðbaÞ 1
h

� ð1� 2mÞ r
a

� �
ZðbrÞ

io

M10ðbrÞ ¼ F ðbrÞ ð1
n

� 2mÞW ðbaÞ 1
h

þ r
a

� �
ZðbrÞ

i
� baW ðbaÞ 1

h
� ð1� 2mÞ r

a

� �
ZðbrÞW 2ðbaÞ

io

M11ðbrÞ ¼ baF ðbrÞ ba
r
a

� �hn
� ZðbrÞW 2ðbaÞ

i
þ 2ZðbrÞW ðbaÞ

o

M12ðbrÞ ¼ baF ðbrÞ r
a

� ��
� 3ZðbrÞW 2ðbaÞ � 2ð2� mÞ 1

ba
ZðbrÞW ðbaÞ þ baW ðbaÞ r

a

� �h
� ZðbrÞ

i�

F ðbrÞ ¼ a
r
1

D
K1ðbrÞ
K1ðbaÞ

; W ðbrÞ ¼ K0ðbrÞ
K1ðbrÞ

; ZðbrÞ ¼ W ðbrÞ
W ðbaÞ ð28Þ

When r ¼ a, F ðbaÞ ¼ 1=D, ZðbaÞ ¼ 1 and the expressions for M1;2;3;4ðbaÞ reduce to those already given in
(14) as well as M5ðbaÞ ¼ 1, M6ðbaÞ ¼ 0, M7ðbaÞ ¼ 0, M8ðbaÞ ¼ 1, consistent with the original definitions of
rrrða; zÞ and rrzða; zÞ. The remaining M9–12ðbaÞ are as follows
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M9ðbaÞ ¼
1

D
2ð1f � mÞ � 2mbaW ðbaÞg

M10ðbaÞ ¼
1

D
ba 1
��

� ð1� 2mÞW 2ðbaÞ
�
� 2ð1� 2mÞW ðbaÞ

�
M11ðbaÞ ¼

ba
D

ba 1
��

� W 2ðbaÞ
�
� 2W ðbaÞ

�
M12ðbaÞ ¼

ba
D

1

�
� 3W 2ðbaÞ � 2ð2� mÞ 1

ba
W ðbaÞ

�
ð29Þ

The asymptotic expansion of these M9–12ðbaÞ determines the singular nature of rhhða; zÞ and rzzða; zÞ. Thus

M9ðbaÞ � 2m þO
1

ba

� �

M10ðbaÞ � �2m þO
1

ba

� �

M11ðbaÞ � 1þO
1

ba

� �

M12ðbaÞ � 2þO
1

ba

� �
ð30Þ

Further integral identities (Watson, 1944, Section 13.4) required, which are a counterpart to Eqs. (16), areZ 1

0

J2mðbhÞ sin bzdb ¼ ð�1Þmh2mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � h2

p
½zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � h2

p

2m

; jzj > h

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � z2

p sin½2m sin�1ðz=hÞ
; jzj < h

Z 1

0

J2mþ1ðbhÞ cos bzdb ¼ ð�1Þmþ1h2mþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � h2

p
½zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � h2

p

2mþ1

; jzj > h

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � z2

p cos½ð2mþ 1Þ sin�1ðz=hÞ
; jzj < h

ð31Þ

On evaluating integrals for rhhða; zÞ and rzzða; zÞ of Eqs. (27), with the asymptotic leading terms ofM9–12ðbaÞ
of (30) and replacing GðbÞ and HðbÞ by their infinite summations, it is clear from the first of identities (16)
and (31) that the expected square root singularities are approached from both sides of jzj ¼ h. The second
of the identities (31) is used for the radial misfit case.

4. Analytical solutions for radial misfit

The solution procedure for radial misfit of the plug is essentially the same as for the plug pull, the
differences arising from the reversed symmetry of displacements and stresses. The presentation is thereby
briefer.
For rrrða; zÞ, define the Fourier cosine transform pair

GðbÞ ¼ 2

p

Z 1

0

rrrða; zÞ cos bzdz ¼
2

p

Z h

0

rrrða; zÞ cos bzdz

rrrða; zÞ ¼
Z 1

0

GðbÞ cos bzdb
ð32Þ
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Similarly for rrzða; zÞ, define the Fourier cosine transform pair

HðbÞ ¼ 2

p

Z 1

0

rrzða; zÞ sin bzdz ¼ 2

p

Z h

0

rrzða; zÞ sin bzdz

rrzða; zÞ ¼
Z 1

0

HðbÞ sin bzdb
ð33Þ

An appropriate auxiliary function /, antisymmetrical in z, is

/ ¼
Z 1

0

AðbÞK0ðbrÞ½ þ BðbÞbrK1ðbrÞ
 sin bzdb ð34Þ

AðbÞ and BðbÞ again follow from equating /-derived expressions for rrrða; zÞ and rrzða; zÞ and their rep-
resentations above:

AðbÞ ¼ �a1GðbÞ þ a2HðbÞ
BðbÞ ¼ �a3GðbÞ þ a4HðbÞ

ð35Þ

where a1;2;3;4 are those for the plug pull problem in Eq. (12).
The boundary conditions for /-derived urða; zÞ and uzða; zÞ, with the expressions above for AðbÞ and

BðbÞ, produce

a
Z 1

0

½M1ðbaÞGðbÞ �M2ðbaÞHðbÞ
 cos bzdb ¼ 2ldr; jzj < h

a
Z 1

0

½�M3ðbaÞGðbÞ þM4ðbaÞHðbÞ
 sin bzdb ¼ 0; jzj < h ð36Þ

Again, M1;2;3;4 are those of Eq. (14).
Now introduce the Bessel function Neumann series for GðbÞ and HðbÞ

GðbÞ ¼
X1
m¼0

GmJ2mðbhÞ

HðbÞ ¼
X1
m¼0

HmJ2mþ1ðbhÞ
ð37Þ

With the representations of GðbÞ and HðbÞ of (37) substituted in the integral expressions (32) and (33) for
rrrða; zÞ and rrzða; zÞ and then making use of the identities (16), the stress boundary conditions are auto-
matically satisfied and produce singular behaviour at z ¼ �h.
The two integral equations (36) resulting from displacements need to be solved for GðbÞ and HðbÞ or

equivalently for all Gm and Hm in (37). With the Jacobi identities (18) and the series for GðbÞ and HðbÞ of
(37) substituted in the two displacement integrals (36) producing Fourier series, the two infinite sets of
linear equations for Gm and Hm, for n ¼ 0; 1; 2; . . . ;1 are

X1
m¼0

Cm;nGm½ þ Dm;nHm
 ¼ 2ldrð2� �nÞ

X1
m¼0

Em;nGm½ þ Fm;nHm
 ¼ 0

ð38Þ
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where

Cm;n ¼
Z 1

0

M1ðbaÞJ2mðbhÞJ2nðbhÞdb

Dm;n ¼ �
Z 1

0

M2ðbaÞJ2mþ1ðbhÞJ2nðbhÞdb

Em;n ¼ �
Z 1

0

M3ðbaÞJ2mðbhÞJ2nþ1ðbhÞdb

Fm;n ¼
Z 1

0

M4ðbaÞJ2mþ1ðbhÞJ2nþ1ðbhÞdb

ð39Þ

For the determination of the average pressure, Q, the substitution of the GðbÞ series representation of (37)
into the Fourier cosine integral for rrrða; zÞ of Eq. (33), then into the integration required in (4) for Q, and
using identity (21),

Q ¼ p
2h

G0 ð40Þ

From the linear sets of Eqs. (38), G0 is proportional to dr, and, from (40), so is Q. All other Gm and Hm are
also proportional to dr and hence to Q.
The far field behaviour of the auxiliary function / is found in straightforward manner by making small

argument expansions of AðbÞ and BðbÞ to produce

/ �
Z 1

0

a2G0

��
þOðb2Þ

�
K0ðbrÞ �

a2

2ð1� mÞG0 1

��
� h
a
H0

G0

�
þOðb2Þ

�
brK1ðbrÞ

�
sin bz

b
db ð41Þ

By using the z integration of Basset’s integral (24)Z 1

0

K0ðbrÞ
sin bz

b
db ¼ p

4
log

Rþ z
R� z

� �
ð42Þ

and the z derivative of Eq. (25)Z 1

0

brK1ðbrÞ
sin bz

b
db ¼ p

2

z
R

ð43Þ

the dominant behaviour of / for large R is

/ � 1

2
a3

h
a

� �
Q log

Rþ z
R� z

� ��
� 1

ð1� mÞ 1

�
� h

a

� �
H0

G0

�
z
R

�
ð44Þ

The first term above corresponds to a centre of expansion and the second to an axial double force (Mindlin,
1936; Timoshenko and Goodier, 1951).
The complete set of displacements and stress expressions for arbitrary r and z follow immediately from

the plug pull expressions (27)–(30) by noting the following changes when passing from the plug pull to
radial misfit cases:

sin; cosf g ! cos; sinf g

M1;M2;M3;M4;M5;M6;M7;M8;M9;M10;M11;M12f g
! M1;f �M2;�M3;M4;M5;�M6;�M7;M8;M9;�M10;M11;�M12g ð45Þ

N.I. Robinson / International Journal of Solids and Structures 39 (2002) 4889–4904 4899



5. Numerical results

With a change of variable from bh to u, the integral expressions for all Cm;n;Dm;n;Em;n; Fm;n of Eqs. (20)
and (39) take the form

p
Z 1

0

MiðpuÞJbðuÞJcðuÞdu ð46Þ

where i ¼ 1; 2; 3; 4; p ¼ a=h is the aspect ratio and b and c are positive integers or zero.
In order to evaluate these integrals, their asymptotic behaviours for large u are examined. Firstly an

asymptotic expansion for W ðuÞ is

W ðuÞ ¼ 1� 1

2

1

u
þ 3

8

1

u2
� 3

8

1

u3
þ 63

128

1

u4
� 27

32

1

u5
þ 1899

1024

1

u6
� 81

16

1

u7
þO

1

u8

� �
ð47Þ

suitable for calculating W ðuÞ for u > 100 for 14 significant figure accuracy. Single term asymptotic be-
haviours for M1;2;3;4ðuÞ then are found to be

M1ðuÞ � �2ð1� mÞ 1
u
þO

1

u2

� �

M2ðuÞ � �ð1� 2mÞ 1
u
þO

1

u2

� �

M3ðuÞ � �2ð1� mÞ 1
u
þO

1

u2

� �

M4ðuÞ � �ð1� 2mÞ 1
u
þO

1

u2

� �
ð48Þ

i.e., M1;2;3;4 � s=u, where s takes the values �2ð1� mÞ or �ð1� 2mÞ. Because MiðuÞ are monotonic with large
argument behaviour defined by (48), all integrals (46) exist, based on the identities (Watson, 1944, Section
13.41,3)

Ibc ¼
Z 1

0

1

u
JbðuÞJcðuÞdu ¼ 2

p
sinðb� cÞp=2

b2 � c2
; bþ c 6¼ 0 ð49Þ

I00 ¼
Z 1

0

p2u
p2u2 þ 1

J 20 ðuÞdu ¼ I0ð1=pÞK0ð1=pÞ ð50Þ

and I0ð Þ is the zero-order modified Bessel function of the first kind.
Analytical integrations of expressions (46) do not appear to be possible. Moreover, direct numerical

quadrature is difficult to do accurately because of the large argument oscillatory behaviour and modest
decay of the JbðuÞ and JcðuÞ Bessel functions with asymptotic property JbðuÞ � 1=

ffiffiffiffiffiffi
pu

p
cosðu� bp=2� p=4Þ.

Some alleviation of this difficulty can be achieved by using the identities (49) and (50) to modify the original
integrations of (46):

p
Z 1

0

MiðpuÞ
h

� s
u

i
JbðuÞJcðuÞduþ psIbc; bþ c 6¼ 0

p
Z 1

0

MiðpuÞ
�

� spu
p2u2 þ 1

�
J 20 ðuÞduþ sI00

ð51Þ

However, obtaining more than three decimal place accuracy is hard to achieve, particularly as the orders b
and c increase.
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Another approach is to integrate numerically accurately up to a finite u ¼ uf and then to analytically
integrate complete integrand asymptotic expansions (including the W ðpuÞ defined by (47)) in terms of cosine
and sine integrals. uf needs to be determined for each combination of b and c such that the asymptotic
expansions are valid.
A more general route, which is used below, is to use the method of Lucas (1995), specifically designed for

integrals (46). This recognises that an algebraically damped, single component oscillatory function can be
integrated between its zeros to provide an infinite alternating series summable by e-convergence methods
(Sidi, 1988). Then the asymptotic product of Jbð ÞJcð Þ is proportional to the form cosB cosC which is

Table 1

Plug pull P � ¼ P=ladz with Poisson’s ratio m ¼ 0:3 for various aspect ratios, p ¼ a=h, compared with the approximate results of
Rajapakse and Gross (1996)

p 8 4 2 1 0.8 0.4 0.2

Rajapakse and Gross (1996) 7.73 9.47 11.97 17.92 24.22 37.35

Present P � 7.668 9.335 11.761 15.426 16.993 23.659 34.505

Table 2

Coefficients G0–3=lad, H0–3=lad with Poisson’s ratio m ¼ 0:3 and p ¼ a=h ¼ 1

G0 G1 G2 G3 H0 H1 H2 H3

Plug pull d ¼ dz 0.20133 �0.07596 0.04525 �0.03193 �0.78151 �0.10675 0.03119 �0.02118
Radial misfit d ¼ dr �1.88890 �0.50575 0.08106 �0.04704 �0.40954 0.14987 �0.08985 0.06372

Fig. 2. Plug pull. Borehole surface stresses in plug region, z=h ¼ 0–2, aspect ratio p ¼ a=h ¼ 1; 4; 8, Poisson’s ratio m ¼ 0:3. (a) Radial
stress rrrða; zÞa2=lP �; (b) shear stress rrzða; zÞa2=lP �; (c) hoop stress rhhða; zÞa2=lP �; (d) axial stress rzzða; zÞa2=lP �.
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convertible to the sum of two components 1=2 cosðBþ CÞ, 1=2 cosðB� CÞ. Using the association of Bessel
functions of the second kind Ybð ÞYcð Þ at large argument with sinB sinC, then Jbð ÞJcð Þ can be replaced by
the sum of the two components 1=2½Jbð ÞJcð Þ þ Ybð ÞYcð Þ
 and 1=2½Jbð ÞJcð Þ � Ybð ÞYcð Þ
. The infinite values
of Yb;cð0Þ are avoided by integrating the original integrand up to a finite uf determined by the zeros of the
two components and then summing the alternating series for the two components arising from integrals
starting at uf . The monotonic behaviour of MiðpuÞ does not alter the oscillatory behaviour of Jbð ÞJcð Þ and
the method still applies. However, large u values will require the asymptotic expansion of W ðpuÞ which are
components of MiðpuÞ.
The infinite systems of Eqs. (19) and (38) for determining Gm and Hm are truncated at m ¼ n ¼ N to

provide a system of 2N þ 2 equations under the assumption that increasing N will provide numerical
convergence. This is found to be so.
The convergent results for plug pull P � ¼ P=ladz, evaluated from Eq. (22) with m ¼ 0:3 for various p are

shown in Table 1, where a comparison with the approximate results of Rajapakse and Gross (1996) is also
given. The first few significant figures are obtained with N relatively small but the convergence for later

Table 3

Average radial stress Q� ¼ Q=ladr with Poisson’s ratio m ¼ 0:3 for various aspect ratios, p ¼ a=h, in the radial misfit case

p 8 4 2 1 0.8 0.4 0.2

Q� �7.716 �5.219 �3.784 �2.967 �2.790 �2.415 �2.214

Fig. 3. Radial misfit. Borehole surface stresses in plug region, z=h ¼ 0–2, aspect ratio p ¼ a=h ¼ 0:2; 1; 4; 8, Poisson’s ratio m ¼ 0:3.
(a) Radial stress rrrða; zÞa=ldr; (b) shear stress rrzða; zÞa=ldr; (c) hoop stress rhhða; zÞa=ldr; (d) axial stress rzzða; zÞa=ldr.
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figures is slower. For example, at p ¼ 1 and N ¼ ½0; 1; 2; 4; 8; 16
 the corresponding values of P � are
½15:3626; 15:4182; 15:4229; 15:4252; 15:4260; 15:4263
. Expectedly, for a short plug with high p the con-
vergence is quicker and conversely so for a long plug. For reference, the coefficients G0–3 and H0–3 are given
in Table 2 for both the plug pull and radial misfit cases when m ¼ 0:3 and p ¼ 1.
Fig. 2(a–d) show the scaled stresses ½rrrða; zÞ; rrzða; zÞ; rhhða; zÞ; rzzða; zÞ
a2=P �, z=h ¼ 0–2, p ¼ 1, 4, 8, for the

plug pull equations (27) at r ¼ a and the series expansions for GðbÞ and HðbÞ of (15). This requires the Weber–
Schafheitlin identities of (21) for rrrða; zÞ and rrzða; zÞ and integrals of the form

R1
0

MiðbaÞJbðbhÞ sin bzdz for
rhhða; zÞ and rzzða; zÞ. These integrals are also evaluable with the method of Lucas (1995) by replacing a Ycð Þ
with cosine or sine. The square root behaviour is evident in all figures and on both sides of z ¼ h for rhhða; zÞ
and rzzða; zÞ. Stresses for r > a are more easily evaluated because of the damping factor, expð�bðr � aÞÞ at
large b, arising from F ðbrÞ and ZðbrÞ of Eqs. (28) which in turn are dependent on K0ðbrÞ=K1ðbaÞ and
K1ðbrÞ=K1ðbaÞ.
To complete the numerical exemplification, values of Q� ¼ Q=ladr with m ¼ 0:3 defined by Eq. (40) for

radial misfit are given in Table 3. These values are in reasonable agreement with those read from a graph
presented by Rajapakse and Gross (1996). Convergence rates with N are similar to those of the plug pull
case, e.g., at p ¼ 1 and N ¼ ½0; 1; 2; 4; 8; 16
 the corresponding values of Q� are ½�2:8987;�2:9641;�2:9660;
�2:9667;�2:9671;�2:9672
. Stresses ½rrrða; zÞ; rrzða; zÞ; rhhða; zÞ; rzzða; zÞ
a=ldr, z=h ¼ 0� 2, p ¼ 0:2; 1; 4; 8;
are shown in Fig. 3(a–d). Expected reversals of symmetry in z are seen. As p becomes small (i.e., long plugs),
rhhða; zÞ þ rrrða; zÞ ! 0 over much of jzj=h < 1 as seen in Fig. 3(a) and (c) as expected when plain strain
conditions are approached.

6. Concluding remarks

By using integrals based on Love’s auxiliary biharmonic function, which provides satisfaction of iso-
tropic displacement and stress conditions, analytical solutions to the original mixed boundary problems
have been found, albeit in terms of infinite series whose coefficients are determined from an infinite system
of linear equations.
The main point to be emphasised in this paper is the recognition and incorporation of the square root

singularity in this mixed boundary value problem. This is done by using Neumann Bessel function series
representations of the kernels of shear and radial stress integral expressions so that the stress boundary
conditions are exactly satisfied with the use of discontinuous Weber–Schafheitlin integrals. The coefficients
of the series are found from the displacement conditions across the plug surface which produce an infinite
set of linear equations each term consisting of an infinite integral of the product of a monotonic function
and two Bessel functions. The integrands which are asymptotically oscillatory and algebraically damped are
well calculated using a recent method of Lucas (1995). The truncation of the infinite system to low orders is
sufficient to give moderately accurate results.
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